Poisson

Poisson

Diskretisiert man die Aufgabe

$$-\Delta u(x_1, x_2) = f(x_1, x_2), \quad (x_1, x_2) \in (0, 1)^2$$

$$u(x_1, x_2) = 0, \quad (x_1, x_2) \in \partial((0, 1)^2)$$

Poisson

Diskretisiert man die Aufgabe

$$-\Delta u(x_1, x_2) = f(x_1, x_2), \quad (x_1, x_2) \in (0, 1)^2$$

$$u(x_1, x_2) = 0, \quad (x_1, x_2) \in \partial((0, 1)^2)$$

mit dem Stern

$$-\Delta u \approx \frac{1}{h^2} \left[\begin{array}{rrr} -1 \\ -1 & 4 & -1 \\ & -1 \end{array} \right] u$$

Poisson

Diskretisiert man die Aufgabe

$$-\Delta u(x_1, x_2) = f(x_1, x_2), \quad (x_1, x_2) \in (0, 1)^2$$

$$u(x_1, x_2) = 0, \quad (x_1, x_2) \in \partial((0, 1)^2)$$

mit dem Stern

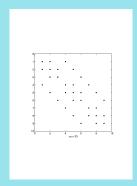
$$-\Delta u \approx \frac{1}{h^2} \left[\begin{array}{rrr} -1 & \\ -1 & 4 & -1 \\ & -1 & \end{array} \right] u$$

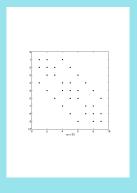
so erhält man mit h=1/N für $N=2^p, p=2,3,...$ und zeilenweiser Numerierung der Unbekannten $x_{ij}\approx u(x(i*h_x,j*h_y)),\ i,j=1,...,N-1$, ein lineares Gleichungssystem Ax=b mit dünnbesetzter, symmetrisch, positiv definiter Matrix.

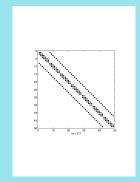
Dimension

N	dim	nz	%	voll
4	9	33	40.7	81
8	49	217	9	2401
16	225	1065	2.1	50625
32	961	4681	0.1	913911
64	3969	19593	6.3-10	15752961

Tabelle: Dimension und Speicherbedarf







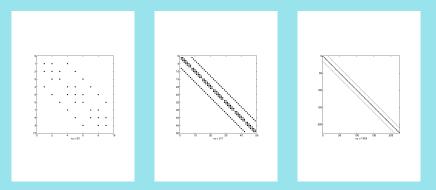
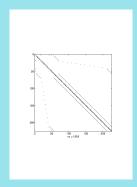
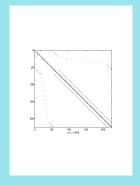
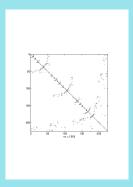


Tabelle: Dünnbesetztheit der Matrizen







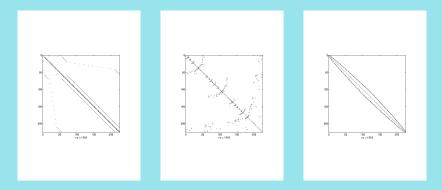


Tabelle: Umnumerierung

Matrixstruktur /

Die Form kann durch verschiedene Umordnungs-Algorithmen (oder Numerierungen) verändert werden.

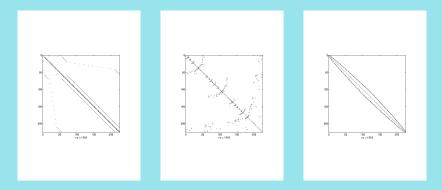


Tabelle: Umnumerierung

Und nun nochmal von vorne.